USGS Visual Identity


By:  Erin A. Lynch and Norman G. Grannemann


Public water supply for the city of Battle Creek, Mich. is withdrawn from the Marshall Sandstone through wells at the Verona well field. Analysis of borehole acoustic televiewer, gamma, and single-point-resistance logs from wells in Bailey Park, near the well field, indicates 12 fracture zones in the Marshall Sandstone. Further interpretation of flowmeter and temperature logs from the same wells indicates that the fracture zones are locally interconnected but appear to remain isolated over a lateral distance of 3,000 feet. Organic chemicals were detected in water samples collected from water-supply wells in the Verona well field in 1981. In 1985, six water-supply wells were converted to purge wells to intercept organic chemicals and divert them from the remaining water-supply wells. Removal of these wells from service resulted in a water-supply shortage. A proposal in which an alternative purge system could be installed so that wells that are out of service may be reactivated was examined. A ground-water-flow model developed for this study indicates that, under the current purge configuration, most water from contaminant-source areas either is captured by purge wells or flows to the Battle Creek River. Some water, however, is captured by three water-supply wells. Model simulations indicate that with the addition of eight purge wells, the well field would be protected from contamination, most water from the contaminant-source areas would be captured by the purge system, and only a small portion would flow to the Battle Creek River. In an effort to augment the city's water supply, the potential for expansion of the Verona well field to the northeast also was investigated. Because of the addition of three municipal wells northeast of the well field, some water from the site of a gasoline spill may be captured by two water-supply wells. Ground water in the area northeast of Verona well field contains significantly lower concentrations of iron, manganese, and calcium carbonate than does water in the existing well field area. However, the Marshall Sandstone in this area has significantly lower transmissivities than those within Verona well field.

Lynch, Erin A., and Grannemann, Norman G., 1997, Geohydrology and Simulations of Ground-Water Flow at Verona Well Field, Battle Creek, Michigan, 1988: U.S. Geological Survey Water-Resources Investigations Report 97-4068, 45 p.

Back to Publications List

Back to USGS, WRD Michigan Home Page

U.S. Department of the Interior, U.S. Geological Survey
Maintainer: Webmaster <>
Updated On: Tuesday, September 26, 2000
Privacy Statement || Disclaimer