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CONVERSION FACTORS AND VERTICAL DATUM

Multiply By To Obtain
inch (in) 25.4 millimeter
foot (ft) 0.3048 meter
mile (mi) 1.609 kilometer
square mile (mi?) 2.590 square kilometer

Temperature in degrees Fahrenheit (°F) can be converted to degrees Celsius (°C)
asfollows: °C =5/9 (°F - 32).

Vertical datum: In thisreport “sealevel” refersto the National Geodetic Vertical Datum of 1929
(NGVD of 1929)--a geodetic datum derived from a general adjustment of the first-order level nets
of both the United States and Canada, formerly called Sea Level Datum of 1929.



A Temporal and Spatial Analysis
of Ground-Water Levelsfor
Effective Monitoring in Huron
County, Michigan

By D.J. Holtschlag and M.J. Sweat

ABSTRACT

Quarterly water-level measurements were ana-
lyzed to assess the effectiveness of a monitoring
network of 26 wellsin Huron County, Michigan.
Trends were identified as constant levels and
autoregressive components were computed at all
wells on the basis of data collected from 1993 to
1997, using structural time series analysis. Fixed
seasonal components were identified at 22 wells
and outliers were identified at 23 wells. The 95-
percent confidence intervals were forecast for
water-levels during the first and second quarters of
1998. Intervalsin the first quarter were consistent
with 92.3 percent of the measured values. In the
second quarter, measured values were within the
forecast intervals only 65.4 percent of the time.
Unusually low precipitation during the second
guarter isthought to have contributed to the
reduced reliability of the second-quarter forecasts.

Spatial interrelations among wells were inves-
tigated on the basis of the autoregressive compo-
nents, which werefiltered to create a set of
innovation sequences that were temporally uncor-
related. The empirical covariance among the inno-
vation sequences indicated both positive and
negative spatial interrelations. The negative covari-
ance components are considered to be physically
implausible and to have resulted from random sam-
pling error. Graphical modeling, aform of multi-
variate analysis, was used to model the covariance
structure. Results indicate that only 29 of the 325
possible partial correlations among the water-level
innovations were statistically significant. The
model covariance matrix, corresponding to the
model partial correlation structure, contained only
positive elements. This model covariance was
sequentially partitioned to compute a set of partial
covariance matrices that were used to rank the
effectiveness of the 26 monitoring wells from
greatest to least. Results, for example, indicate that
about 50 percent of the uncertainty of the water-

level innovations currently monitored by the 26-
well network could be described by the 6 most
effective wells.

INTRODUCTION

A network of 26 ground-water-level monitor-
ing wellsin Huron County, Michigan is operated
by the County in cooperation with the U.S. Geo-
logical Survey. Information from the network is
used to assess long-term and seasonal variationsin
ground-water levels and local changes that may be
partly associated with human activities. Results
from monitoring provide county planners and
water-resources managers with data needed to
develop ground-water-management plans that are
consistent with available resources and expected
demands.

This report describes atechnique for assessing
and improving the effectiveness of ground-water-
level monitoring networks. The technique provides
astatistical basis for extracting information on
trends and seasonal variations in water levels at
individual wells, forecasting ground-water levels,
and assessing the potential redundancy in measure-
ments of spatially-correlated phenomena. Also, the
technique provides a basis for improving the effec-
tiveness of data collection by identifying specific
subsets of monitoring wells that provide data
which is consistent with informational needs and
available monitoring resources. The technique was
applied to a network of 26 monitoring wellsin
Huron County, Michigan on the basis of quarterly
water-level monitoring from 1993 to 1998.

Description of the Study Area and
Monitoring Wells

Huron County isin the east-central part of
Michigan's Lower Peninsula (fig. 1). The county,
which is shaped roughly like a semicircle, is
bounded along the north by 91 mi of Great Lake
shoreline (Lake Huron and Saginaw Bay) and
along the south by Sanilac and Tuscola Counties.
Most streams start within the county and flow to
the lake or bay. Land surface isflat to rolling; ele-
vations range from 580 ft above sealevel along the
shoreline to more than 800 ft near Ubly, Michigan.
The county has an area of 830 miz, most of which
is pasture and cropland; population in 1990 was
34,951.
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Figure 1. Location of monitoring wells in Huron County, Michigan.



The geology of Huron County consists of con-
solidated strata of Mississippian and Pennsylva-
nian age and unconsolidated surficial deposits of
Pleistocene age. From oldest to youngest, the con-
solidated strata are the Coldwater Shale, the Mar-
shall Formation, the Michigan Formation, the
Bayport Limestone, and the Saginaw Formation
(fig. 2). Throughout the county, unconsolidated
lake and glacial deposits overlie the consolidated
deposits with maximum thicknesses that range
between 80 and 120 ft.

In 1990, the U.S. Geological Survey (USGS)
completed a study of the hydrogeology of Huron
County, Michigan (Sweat, 1991). In 1993, Huron
County and the USGS agreed to continue water-
level monitoring at 26 selected wells (fig. 1)
throughout Huron County (Sweat, 1995, 1996,
1997). The wells monitor hydraulic head (water-
levels) in four geologic units: 3 wells measure
heads in the Coldwater confining unit, 17 wells
measure heads in the Marshall aguifer, 5 wells
measure heads in the Saginaw Formation, and 1
well measures head in the glaciofluvial aquifer
(table 1). Of the 26 wells operated, water levels are
recorded continuously in 4 wells and measured
quarterly in 22 wells. First quarter (January
through March) measurements were generally
made in March; second-, third-, and fourth-quarter
measurements were generally made in June, Sep-
tember, and December, respectively. Measured
depths to water below measuring points were con-
verted to elevations above sea level by subtracting
depths from the elevation of the measuring point.

Acknowledgments

James LeCureux and Carol Schadd of Huron
County Cooperative Extension Service assisted the
project by obtaining many of the field measure-
ments of water level. Fred Nurnberger, State Cli-
matologist of Michigan, provided precipitation
datafor Huron County, Michigan.

TEMPORAL COMPONENTS OF GROUND-
WATER-LEVEL MEASUREMENTS

Repetitive ground-water level measurements
track persistent and ephemeral changes in water
levels through time. Persistent changes may
include trend and seasonal components that charac-
terize the ground-water resource and provide infor-
mation needed for assessment and effective

management. Ephemeral changes reflect day to
day changes that are influenced by recent weather
conditions, such as the amount of time since the
last soaking rain. Ephemeral changes obscure
detection of persistent patterns.

Time-series analysis provides a systematic and
consistent basis for identifying trends and seasonal
components of water levels, quantifying autore-
gressive (serial correlation) characteristics, and
describing the variability associated with ephem-
eral changes. Classical time-series analysis (Brock-
well and Davis, 1987) describe time series by use
of ARIMA (autoregressive integrated moving
average) models, following removal of trend com-
ponents. ARIMA models, however, are based on
statistical assumptions that are often difficult to
verify for hydrologic time series and generally
require at least 50 and preferably 100 observations
for estimation (Box and Jenkins, 1976, p. 18).
Structural time-series analysis provide an alterna-
tive that can simultaneously identify trends, sea
sonal components, autoregressive characteristics,
and the influences of explanatory variables on time
series with fewer observations than ARIMA mod-
els. Moreover, the description of trend and sea-
sonal componentsis flexible (not limited to
simplified deterministic forms) and is directly
interpretable from a physical perspective.

Structural Time-Series Analysis

Structural time-series analysis (Harvey, 1994)
as implemented by Koopman and others (1995)
was used to identify trend, seasonal, and autore-
gressive components in quarterly water-level mea-
surements made in Huron County between 1993
and 1997; outliers (unusual values) also were iden-
tified. Resulting models were used to forecast the
expected values and uncertainties of water levels
for the six quarters following the data used for
model development. Forecast intervals were com-
pared with data obtained during the first two quar-
ters of 1998 to assess model adequacy.

The general form of the structural time series
model is:

yt:m+9t+é|iwi,t+ut L)
il

where
Y; is the water-level measurement at time t, and
m isthe trend component at time t. In structural



ERATHEM SYSTEM SERIES GROUP STRATIGRAPHIC UNIT HYDROGEOLOGIC UNIT TH'geKe't\‘)ESS
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191 Quaternary Pleistocene Glacial and lacustrine 0-10
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Pennsylvanian Saginaw Formation Aquifer system 0-100
Lower
Unconformity
) Mississippian Meramecian Grand Bayport Limestone 0-100
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Member of Marshall 0-120
Formation (aquifer)
Sandstones in lower
part of Marshall 0-225
Formation (aquifer)
Kinderhookian Coldwater Shale Confining unit 1,000-1,200

Figure 2. Stratigraphic succession and aquifer nomenclature in Huron County, Michigan (Sweat, 1991).

time-series models, trend is described by level (m)
and slope (by) components, which may be either
stochastic or deterministic. When the level is sto-
chastic, an uncorrelated random sequence h; with a
mean of zero and variance s Zh, isintroduced. Sim-
ilarly, when the slope is stochastic, an uncorrelated
random sequence z; with mean zero and variance
s2, is present. (The random sequences h, and z;
also are assumed to be uncorrelated with each
other). The effect of h, isto allow the level to shift
up and down locally, while z; allows the slope to
change. In the special case where either 2, or s2,
are equal to zero, the corresponding components
are considered deterministic and the associated
trend component is uniform throughout the series.
In the special case where the slope parameter, b,
and s 2h are equal to zero, thetrend is a constant
(level). The state-space representation of the trend
component used in the structural mode is:

My - n],t—1+bi,t—1+hi,t_ )
b; ¢ bi _1t+Z

& is the seasonal component in the qth guarter at
timet. Asin the case of the trend component, the
structural time series model providesthe flexibility
for stochastic seasonality. The general form of the
seasonal component is:

4
g = a dQt)-a) xg,+w,. (3
g=1
01, O, and g are estimated seasonal coefficientsfor
the first, second, and third quarters, respectively,
corresponding to the periods Janary through
March, April through June, and July through Sep-
tember. Because the seasonal components were
restricted to sum to zero, the fourth seasonal com-
ponent, g, (October through December) was set
equal to -(g; + & + gg). Here, the function Q(t)
returns the quarter corresponding to timet, and d(?)
isthe Kronecker deltafunction which returnsa 1 if
(Q(t) -q) evaluatesto zero, and is zero otherwise.
Possible stochastic disturbances in seasonality are
described by the disturbance w;, which is an uncor-
related random sequence with a mean of zero and
variance of s2,,. When s2,, isequal to zero, the




Table 1. Selected attributes of monitoring wells in Huron County, Michigan
[G, indicates well in glaciofluvial aquifer; S, indicates well in the Saginaw aquifer system;
M, indicates well in Marshall aquifer; and C, indicates Coldwater confining unit.

Well numbers ending in an “r” indicate that water levels are recorded continuously.]

Altitude

Hole depth

Vertex Well number Latitude Longitude (feet above (feet below Ag;ijfeer
sealevel) land surface)

A H1C 43°41'44" 83°27'44" 600.00 76 S
B H2r 43°41'03" 83°1303" 747.60 91 G
C H3 43%42'19" 83°10'42" 731.70 120 M
D H4 43°44'02" 83°05'59" 751.60 80 M
E Hb5r 43°4323" 82056'19" 796.03 171 M
F H6 43°4526" 82°5026" 781.50 90 M
G H7 43°42'08" 82°41'11" 726.80 140 C
H Hor 43°49'47" 83023'33" 584.20 180 S
I H10 43°49'43" 83°19'08" 617.07 150 S
J H13 43°4900" 83°13'16" 642.35 120 S
K H14 43°49'00" 83°07'18" 681.30 100 M
L H15B 43°48'11" 83°02'16" 751.20 99 M
M H16 43°4853" 82056'52" 771.50 160 M
N H17 43°48'39" 82049'24" 751.00 80 M
o H19 43°52'42" 83°15'39" 611.90 100 M
P H20 43°53'26" 83°1057" 631.00 60 S
Q H21 4395448" 83°01'27" 702.90 80 M
R H22 43°52'13" 82057'47" 695.50 150 M
S H23 43°54'45" 82048'42" 721.80 150 C
T H24 43954'11" 82044'42" 691.50 100 Cc
U H25Ar 43°57'36" 83°09'48" 600.80 200 M
\% H25B 43°57'36" 83°09'48" 601.00 160 M
W H25C 43°57'36" 83°09'48" 602.20 40 M
X H26 43°56'42" 83°02'55" 662.70 60 M
Y H27 43°57'33" 82054'58" 716.50 80 M
4 H28 43°57'33" 82051'22" 691.70 75 M




seasonal component is deterministic (fixed) and g

. i?-ll "i.t js a term that accounts for individ-
ual outliersindexed by the elementsi of the set of
outliers{I}. Thescalar | ; coefficentsindicate the
magnitude of outliers corresponding to the pulse
intervention vectors represented by w; ;. The indi-
vidual vectors take on a value of one during peri-
ods of intervention (corresponding to outliers) and
are zero otherwise. Finaly, u; is the autoregressive

error component of the form:
Ug = Ui +e, (4)

where| isthe autoregressive coefficient for com-
ponentsthat are separated by one season (lag 1). In
the special case wherej isequal to O, the error u;
is an uncorrelated disturbance sequence with mean
zero and variance s 2, In this analysis, e, was com-
puted as u; - j U1, and is referred to subsequently
as the innovation sequence.

In the analysis for each monitoring well, time-
series models potentially included stochastic level,
slope, and seasonal components and an autoregres-
sive component. Model components were elimi-
nated in a stepwise procedure to minimize the
Bayesian Information Criteria(BIC), a statistic that
decreases with model-error variance and increases
with the number of (fixed) parameters and stochas-
tic components (hyperparameters) in the modedl. In
general, stochastic components were eliminated
before deterministic components. Standardized
residuals that had a magnitude greater than 2.0
were examined to identify possible outliers. To
confirm the presence of outliers, models were com-
puted with and without intervention variables cor-
responding to possible outliers. The model with the
minimum BIC value was selected. In addition to
estimating intervention effects, the structural
model also hasthe flexibility to estimate the effects
of explanatory (independent) variables on water
levels.

Results of Time-Series Analysis

The identified time-series models were simple
and remarkably consistent from well to well (table
2 and figs. 3-8). All modelsincluded autoregres-
sive error components with positive (AR 1) coeffi-
cients. None of the selected models included
stochastic componentsin levels, slopes, or season-

als. In addition, no deterministic slope components
were significant, thus all trend components are
described as constant levels. Model structures dif-
fered only by the presence or absence of afixed
seasonal component and the number of outliers
detected.

Seasonal components were identified at 22 of
the 26 wells analyzed. Water levelsin 4 wells com-
pleted in the Marshall formation had no seasonal
components; however, water levelsin 13 other
wellsin the Marshall formation had seasonal com-
ponents. Inspection of seasonal components indi-
cate that 20 of thefirst quarter and 21 of the second
guarter coefficients were positive, indicating
higher than average water levelsin the first two
guarters of the year. In contrast, seasonal coeffi-
cientswere negativein all 22 wells during the third
guarter, indicating lower than average water levels
for this period. Results in the fourth quarter were
mixed, with 11 wells having positive and 11 wells
having negative coefficients, which were com-
puted as the negative sums of the estimated coeffi-
cients.

A total of 35 outliers were identified at 23
wells; 28 of these outliers were negative and 7
were positive. The most outliers at any one well
was three. Most (32) of the outliers occurred in the
third quarter, 21 of these occurred in the third quar-
ter of 1995 alone. The total number of outliers
identified represents alarger percentage (6.7 per-
cent) of the measurements than expected for a sam-
ple from a population described by asingle normal
probability distribution. The large number of outli-
ersin 1995 may be partly related to precipitation
patterns. Review of precipitation records at Bad
Axe, Michigan in central Huron County indicates
that third quarter precipitation of 6.95 inchesin
1995 was far below average for the four remaining
years of 12.96 inches. Inclusion of quarterly pre-
cipitation asacovariatein the structural time-series
analysis, however, did not significantly reduce
model error.

Water-level forecasts and associated uncertain-
ties were computed on the basis of the model
developed with five years of data available through
the fourth quarter of 1997. During the first quarter
of 1998, measured water levels were within the 95
percent of the lead-1 (one quarter ahead of the last
measurement used in model development) forecast
intervalsin 92.3 percent of the cases (24 of 26



Table 2. Structural time-series components of water levelsin wellsin Huron County, Michigan
[RMSE, Root mean square error; SEP, Standard error of prediction; AR--Autoregressive;
Yr-Q, two-digit year code and quarter (January-March equals 1)]

Level Seasonal Component Outlier
well (levn QZE) AR Cof. -
number ( Coef.q; Coef.q  Coef. gz (se) Date
above Cosf. | RMSE
sealevel) (RMSE) (RMSE) (RMSE) (YR-Q)
Hi1C 583.78 -0.356 0.688 -0.298 0.988 95-3 -2.00 0.445 0.486
(3.42) (.150) (.143) (.157) (.560)
H2r 715.44 0.354 0.586 -0.767 0.146 95-3 -1.43 527 415
(.126) (.179) (.177) (.192) (.477)
H3 702.17 0.078 0.364 -0.348 0.538 93-3 -1.03 A17 .345
(.191) (.137) (.133) (.162) (.410) 95-3 -1.56 417
H4 738.45 0.126 0.279 -.294 0.512 95-3 -1.31 490 428
(.216) (.163) (.158) (.173) (.492)
H5r 783.75 -- -- -- 0.310 -- -- -- 1.012
(.328) (1.03)
H6 767.37 0.431 0.399 -0.924 0.451 95-3 -1.14 .509 406
(.194) (.167) (.163) (.199) (.483) 96-3 152 .509
H7 709.83 0.129 0.205 -0.216 0.583 96-2 -1.10 .165 143
(.086) (.061) (.059) (.053) (.170) 97-1 -2.84 .166
Hor 579.41 0.166 0.647 -0.340 0.829 95-3 -1.68 .538 544
(.673) (.180) (.173) (.189) (.625)
H10 592.63 0.228 0.368 -0.410 0.469 94-1 -5.23 .255 211
(.103) (.093) (.083) (.091) (.251) 95-3 -.55 .254
H13 609.89 0.721 0.618 -1.490 0.293 95-3 -2.40 .836 .678
(.245) (.279) (.275) (.299) (.779)
H14 676.27 0.073 0.421 -0.545 0.366 95-3 -1.65 .665 .551
(.220) (.221) (.217) (.236) (.633)
H15B 734.27 0.258 0.204 -0.728 0.694 95-3 -2.78 .831 .787
(.599) (.277) (.267) (.292) (.904)
H16 742.08 0.061 0.551 -0.433 0.661 95-3 -1.20 .526 491
(.342) (.175) (.169) (.185) (.564)
H17 743.42 1.497 1513 -3.848 0.436 94-3 452 T77 .561
(.278) (.249) (.243) (.346) (.692) 95-3 -16.45 T77
96-3 5.42 T77
H19 607.66 0.219 -0.496 -0.335 0.469 -- -- -- .266

(120)  (098)  (.096) (.096) (.296)



Table 2. Structural time-series components of water levelsin wellsin Huron County, Michigan--Continued
[RMSE, Root mean square error; SEP, Standard error of prediction; AR--Autoregressive;
Yr-Q, two-digit year code and quarter (January-March equals 1)]

Level Seasonal Component Outlier
wei  (EMSE) AR Coef. -
number a(bove Coef.g; Coef.g, Coef. g3 (se Date Codt. | RMSE
sealevel) (RMSE) (RMSE) (RMSE) (YR-Q) '

H20 617.07 -0.150 0.497 -0.244 0.541 - - - 0.297
(.152) (.107) (.104) (.104) (.:330)

H21 692.67 0.282 0.189 -0.739 0.251 95-3 -1.05 0.336 252
(.092) (\111) (.109) (.133) (.300) 96-3 151 .336

H22 681.64 0.402 0.358 -0.903 0.604 95-3 -1.34 .398 339
(.214) (.131) (.127) (.155) (.403) 96-3 1.40 .398

H23 712.25 0.045 0.011 -0.071 0.822 95-3 -0.20 .084 .085
(.101) (.028) (.027) (.029) (.097)

H24 665.87 0.250 0.236 -.450 0.676 96-3 0.40 .188 A77
(.128) (.063) (.061) (.066) (.203)

H25Ar 594.77 -- -- -- 0.278 95-3 -2.19 717 .701
(.226) (.735)

H25B 598.33 0.120 0.345 -.587 0.523 95-3 -1.78 464 408
(.210) (.154) (.150) (.164) (.468)

H25C 598.50 - - - 0.124 93-3 -2.06 443 405
(.115) (.438) 95-3 -2.71 443

H26 658.21 - - - 0.278 93-3 -2.88 545 518
(.174) (.559) 95-3 -5.08 545

H27 683.57 0.362 0.256 -0.589 0.688 95-3 -1.11 426 .376
(.293) (.140) (.135) (.166) (.448) 97-3 -5.05 426

H28 671.98 0.758 0.423 -1.387 0.303 95-3 -1.40 A76 .362
(.141) (.157) (.154) (.187) (.431) 96-3 2.88 476
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Figure 3. Water levels and time-series components at wells H1C, H2r, H3, H4, and H5r.
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wells), indicating close agreement with the fore-
casts. In contrast, during the second quarter of
1998, only 65.4 percent of the measured water-lev-
els were within the 95 percent of the lead-2 fore-
cast intervals. All measured water levels that were
outside the forecast intervals were too low. Part of
the discrepancy between measured and forecast
intervals during the second quarter may be associ-
ated with low second-quarter precipitation
amounts. Specifically, during the second quarter of
1998, total precipitation was 5.62 inches, com-
pared with an average second quarter precipitation
of 9.14 inches during the model estimation (1993-
1997) period. Identifying a measure of precipita-
tion that is more highly related to the water levels
than quarterly totals may help improve the forecast
model performance.

SPATIAL INTERRELATIONS AMONG
GROUND-WATER LEVEL
MEASUREMENTS

In addition to the temporal components of
ground-water measurements, ground-water levels
also are spatially correlated. This correlation is
thought to be positive, that is, where point mea-
surements indicate above (below) average water
levels, nearby points are also likely to be above
(below) average. The physical basis for this
assumption results from the regional nature of rain-
fall, which is a primary cause of ground-water
level fluctuations (in areas not influenced by
pumping), and from the ground-water flow
response to water-level gradients.

The positive correlation among water-level
measurements creates the potential for data redun-
dancy and inefficiency in monitoring networks.
Quantifying the spatial correlation structure is
needed to assess its impact on monitoring effec-
tiveness. Variogram analysis (Cressie, 1991, and
Isaaks and Srivastava, 1989) is acommon tech-
nique for estimating the spatial correlation struc-
ture as a function of separation distances between
measurements. It is, however, not particularly
appropriate for analysis of monitoring networks
where there are few unique separation distances
because repeated measurements are made at alim-
ited number of wells, or where separation distance
itself is not areliable indicator of spatial correla-
tion because of differencesin the hydraulic proper-
ties of geologic units separating wells in different
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strata. Thus, the analysis of spatial interrelations
developed in this report does not rely on a consis-
tent relation between separation distance and corre-
lation to analyze effectiveness, but utilizes the
available statistical evidence directly. It is similar
to variogram analysis, however, in that an empiri-
cal covariance structureis used as abasisfor a
more theoretically appropriate model covariance
structure.

In this report, the covariance matrix is used to
describe how water levels vary together. For this
square matrix, the number of rows (columns) cor-
responds to the number of wellsin the network.
Variances of water-level components at individual
wells are contained on the main diagonal of the
matrix, with covariances between water-level com-
ponents at different wells on off-diagonal terms.
Simple correlation coefficients can be computed by
dividing individual covariances by the square root
of the product of corresponding variance compo-
nents. The covariance matrix is symmetric along
the main diagonal.

To interpret the covariance matrix for network
effectiveness, each water-level sequence was
adjusted to remove any nonstationarity so that
water-level measurements represented the same
population. Thus, trend and seasonal components,
when present, were subtracted from the values of
the water-level measurements, resulting in residual
sequences that had a mean of zero. The effects of
outliers also were removed so that the data ana-
lyzed were approximately normally distributed.
About 93.3 percent of the measurements are
thought to arise from a normal probability distribu-
tion, for which the model is applicable; 6.7 percent
of the measurements, corresponding to outliers,
may arise from a different distribution, which is
not accounted for by the model. Finally, effects of
temporal correlation in the residual sequenceswere
removed by filtering. Filtering, as used in this
report, is a mathematical operation that subtracts
the product of the autoregressive coefficient and
the value of the lag 1 residual (at the previoustime
step) from the residual value, resulting in aloss of
one measurement value in the analysis. The result-
ing filtered residual sequences arereferred to as
innovation sequences ¢, (eg. 4) in thisreport.

An empirical estimate of the covariance of the
innovation sequences was computed as a prelimi-



nary estimate of the structure of the spatial interre-
lations. Specifically, row vectors of innovations of
length n=19 (5 years of quarter measurements
minus the measurement used in filtering) were
stacked for each of the p=26 monitoring wells to
formthe & _ matrix. Then, the empirical covari-

~pxn
ancematrix s; was computed as.
1

e
S, = —e e,
e nlpxn%xn

= (5)

Results of this calculation indicate that the
signs of elementsin the empirical covariance
matrix were generally positive, although afew
were negative (fig. 9). Because of the positive spa-
tial correlation in rainfall patterns and the flow
response of ground-water levelsto head gradients,
however, the negative covariances are not physi-
cally plausible. More likely, the negative covari-
ance estimates are the result of sampling error
(resulting from a limited number of measurements
rather than from errorsin the measured values).
Similarly, the statistical significance of positive
covariances are difficult to evaluate. To overcome
these limitations for inferring spatial interrelations
from an empirical covariance matrix, amodel was
developed for the covariance structure.

A Graphical Model of the Covariance Structure

Graphical modeling is aform of multivariate
analysis that represents statistical interrelations by
use of independence graphs (Edwards, 1995, Whit-
taker, 1990). Graphical models are based on an
analysis of the inverse empirical covariance
matrix, Wy = S;t. Off-diagonal elements of W
(referred to as the precision matrix) are the esti-
mated partial correlation coefficients. Under amul-
tivariate normal assumption, any two variables
(water-level innovations) are conditionally inde-
pendent if the corresponding elementsin the
inverse covariance matrix are equal to zero. Thus,
replacing elements in the precision matrix with
zero that are not significantly different from zero,
simplifies the description of spatial interrelations.

In this analysis, graphical models were devel-
oped by initially assuming an independence
model 1, that is, all partial correlations were zero
and the corresponding initial model covariance
matrix, Sy, was equal to the diagonal matrix of .
Then, a set of 26 aternative covariance matrices
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S¢1) was created corresponding to the covariance
structures for all possible single-well monitoring
networks. Elementsin the alternative covariance
matrices were computed in an iterative manner to
meet the constraints that (1) the diagonal elements
in the covariance matrix set S;;; were equal to the
diagonal elements of <;, (2) the off-diagonal ele-
ment pairsin é{ 13 were equal to the corresponding
elementsin <;, and (3) the off-diagonal element
pairsin the precision matrix set \7\/{1} weretheonly
non-zero partial correlation pairsin the precision
matrices. The set of maximized log-likelihood
functions was evaluated for the set of covariance
and precision matrices as.

_ ~N%yIn(2p) | —nin(S;y)) N9

pt) 2 2 2
where
n equals the number of innovations,
Oy isthetrace (sum of the diagonal components)
_ of the matrix product vy ,,§, ., and
S(1; isthe determinant of the alternative covariance
matrix.
A set of Bayesian Information Criteria (BIC)
values was computed as

BIC{l} = —2InL{1}—In(n)p{1} @)

where pyq3 is the number of model parameters.

The maximum value of the BIC; in the set
BIC;y; and the corresponding monitoring well was
selected as the most effective single-well monitor-
ing network. The graphical modeling analysis pro-
ceeded in a stepwise manner to identify additional
effective wells until BIC4 could not be decreased
any further.

An independence graph resulting from this
analysisis interpreted as follows: (1) vertices (cor-
responding to water-level innovations at individual
wells) that are not connected by an edge are not
significantly correlated (assuming multivariate
normality, they are independent); (2) vertices that
are directly connected by an edge are correlated
(not independent), and (3) vertices that are con-

1. A saturated model, in which all partial cor-
relations were initially assumed to be signif-
icant, could not be estimated because of the
limited number of time series measure-
ments.

{1} , (6)
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nected through an intervening vertex are uncorre-
lated after accounting for the effect of the
intervening vertex (conditionally independent).
Thus, adiagram of the independence graphs
depicts the significant spatial interrelations among
water-level innovations and is associated with a
model covariance matrix.

Results of Graphical Modeling

A graphical model of water-level innovations
was developed by use of MIM 3.0 (HyperGraph
Software, 1998). Starting with an independence
model, aforward selection process of 29 steps
reduced the Bayesian Information Criteriafrom
600.3 for BICy to 292.0 for BICyg (fig. 10). The
selected model included 23 sets of mutually con-
nected sets of vertices (cliques) formed by 29 of
the possible 325 edges (fig 11). Of the 23 cliques,
19 consisted of two-vertex sets, such as{A 1} and
{BK}, and 4 were three-vertex sets, including { C J
K} and { E F K}. Of the 26 vertices, 11 were first
degree (directly connected to only 1 other vertex),
5 were second degree, 6 were third degree, 1 was
fourth degree, and 3 werefifth degree vertices. The
degree of avertex indicates the number of condi-
tioning vertices needed for independence at that
vertex. Thus 11 wells are independent of innova-
tions throughout the remaining network, given
water levels at only one other well. The water-level
monitoring network is connected, in the sense that
thereis apath (a sequence of edges) between every
pair of vertices.

Three principal sub-networks can be defined
on the basis of separation by vertex L (Well
H15B): N,, defined as the set of vertices, equal to
{ABCFHIJKMNQRTU},Ngequalto{D S
VWX Z},andNc ={E G O P Y}. This separation
implies that water-level innovations in any one
sub-network are conditionally independent of inno-
vations in the remaining two subnetworks given
dataat well H15B. The spatial interrelations indi-
cated by the graphical model are shown in fig. 12,
where the vertices are located geographically
within Huron County.

ACHIEVING EFFECTIVENESSBY
RANKING MONITORING WELLSAND
SPECIFYING NETWORK CONSTRAINTS

Time-series analyses were used to identify reg-
ular and irregular components of water-level fluc-

tuations in monitoring wells. The regular
components, such as trend and seasonal character-
istics, were used to describe and forecast water lev-
els. Theirregular component, referred to asthe
autoregressive component, was used to character-
ize the uncertainty in water-level information.
After filtering to remove the influence of autocor-
relation, the irregular component was used with
graphical modeling to quantify the spatial interrela-
tions among water-levels. This description of spa-
tial interrelations provides a basis for improving
the monitoring effectiveness. Specifically, the
description can be used to identify an appropriate
subset of monitoring wells to meet specifications
on network uncertainty or constraints on monitor-
ing resources.

In this report, the uncertainty of the network
refersto the quarterly variability in water-level
innovations that are not accounted for by monitor-
ing. If quarterly monitoring were to continue at all
wells, the uncertainty of the network would be
zero. If monitoring were discontinued, an estimate
of uncertainty could be based on the sum of diago-
nal elements (trace) of the model covariance
matrix. For all other monitoring options, an esti-
mate of the network uncertainty could be based on
those variance components that are not accounted
for by monitored wells. The square root of the
summed variance components is used here to pro-
vide a measure of uncertainty that is consistent
with the measurement unit of feet.

The model covariance matrix can be parti-
tioned into four components to correspond with a
set of unmonitored wells{Y} and a set of moni-
tored wells{Z} as

~ Siv S
Spo = S0 Stzny| | ©)
S(vzy Sizz)

where
Sog isthe model covariance structure inferred
from graphical modeling,

Sivy isthe model covariance among the
unmonitored wells,

S isthe model covariance among the

(ZZ} .

monitored wells, and

s{ YZ) z_a\nd its transpose s{ AL is the model
covariance among the monitored and
unmonitored wells.
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This partitioning strategy is used to describe
the network uncertainty remaining after selecting a
subset of monitoring wells{z} of varying size by
computing the model partial covariance structure
as:

Svvxz = Syv—SvzS72Szv, 9)
where
Syy,z Isthe model partial covariance structure of
the set of unmonitored wells{ Y}, given that
wellsin the set { Z} are being monitored, and
ézlz isthe inverse model covariance of the
monitored wells.

The maximum uncertainty of water-level inno-
vations in the network corresponds to having no
monitoring wells, that is
tr(S) = tr(Syyz) for {z3 = {&} , wheretr isthe
trace. From this point, a set of 26 partial covariance
matrices éYY 711, Were computed corresponding
to all 26 single-well networks. The most effective
single-well monitoring network was identified by
selecting the partial covariance matrix with the
minimum trace of éYYz ,- Thewell corresponding
to this network was added to the set {Z} ={Z,}. The
computation, selection, and addition procedurewas
repeated for the 25 two-well networks that are pos-
sible after the first well is selected. The computa-
tion proceeded in a similar manner until all 26
wellswere included in the set of monitored wells.

The sequence of wells identified provides a
ranking of monitoring wells from the most effec-
tive (well H6) to the least effective (well H7) (fig.
13). The nonlinear decrease in uncertainly shows
that water-level innovations are not equally
(co)variable at all wells. Further, the ranking pro-
vides a mechanism for selecting the most effective
subset of wells for meeting uncertainty specifica-
tions or monitoring constraints.

For example, if monitoring resources were suf-
ficient to operate only 6 monitoring wells, the most
effective network would bethe set { H6, H5, H15B,
H25Ar, H26, H9r} (fig. 13). Thisisthe same set of
wells that most effectively accounts for 50 percent
of the uncertainty currently monitored by the net-
work of 26 wells. By extension, figure 13 can be
used to identify the subset of wells that most effec-
tively meets a specified uncertainty for any
reduced sized network.
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Therelationship in figure 13 is applicable only
to the proportion (93.3 percent) of the measure-
ments likely to arise from the multivariate normal
distribution described by the graphical model. That
is, about 6.7 percent of water-level measurements
were classified as outliers that arise from an
unknown probability distribution. The network
uncertainty from these outlier-type measurements
are not explicitly accounted for in the analysis. If
the probability of outliers were equal at all wells,
however, the most effective network would consist
of the same subset of wells, although the percent-
age of total uncertainty accounted for by areduced
network would be less than that indicated by
figure 13.

SUMMARY

Quarterly ground-water level measurements
between 1993 and 1998 at 26 wellsin Huron
County, Michigan were analyzed to assess the
effectiveness of the monitoring network. A struc-
tural time-series analysis identified trend, seasonal,
and autoregressive components and statistical out-
liersin the series at individual wells. Results indi-
cate that trend components at all siteswere
constant levels and that residuals contained an
autoregressive component. In addition, fluctuations
of water levelsin 22 wells followed afixed sea
sonal pattern. A total of 35 outlierswereidentified,
21 of which occurred in third quarter of 1995.
Although the large number of outliersin 1995 may
be related to unusual rainfall during that year, the
number of outliers may indicate that ssmpled water
levels arise from two statistical distributions: a nor-
mally distributed population constituting perhaps
93.3 percent of the measurements and a more
extreme distribution generating the remaining 6.7
percent.

The structural time-series models were used to
forecast water-level intervals for 6 quarters begin-
ning with the first quarter of 1998. Comparison
between forecast intervals and measurements dur-
ing the first two quarters of 1998 produced some-
what discrepant results. Resultsfor the first quarter
indicate that forecast intervals were in close agree-
ment with measured values; results in the second
guarter indicate that forecast intervals were often
higher than measured values. Poor results during
the second quarter of 1998 may be related to
unusually low precipitation amounts. Finally, the
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Figure 13. Relation between number of wells monitored and network uncertainty.
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autoregressive coefficient estimated in the struc-
tural time series models were used to filter the
autoregressive errors and produce innovation
sequences used in the evaluation of the monitoring
effectiveness.

The innovation sequences were used to com-
pute an empirical estimate of the spatial interrela-
tions among water-level innovations. Although the
spatial interrelations were expected to be positive,
some of the individual empirical innovation covari-
ances were negative. Although the negative empir-
ical covariances are thought to arise from sampling
error, further analysis was needed to determine the
statistically significant interrelations. Thus graphi-
cal modeling, which is aform of multivariate anal-
ysis, was used to model the spatial interrelations
among water level innovations. The graphical
model identified 29 significant interrelations
among the possible 325 estimated by the empirical
covariance matrix. Thus the graphical model not
only simplified the description of interrelations
among wells, but also resulted in amodel covari-
ance matrix in which no covariance elements were
less than zero.

The model covariance matrix was used to rank
the effectiveness of alternative subsets of monitor-
ing wells. The uncertainty of a network with no
monitoring wells was computed as the square root
of the trace of the model covariance matrix. For
sub-networks composed of from 1 to 25 monitor-
ing wells, effectiveness was based on a partitioning
of the model covariance matrix. The uncertainty
for the full network was assumed to be zero. The
results provide a mechanism for selecting subsets
of monitoring wells, should reductionsin the moni-
toring network be required.
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